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Abstract. Massive spherical configurations with an isothermal core and an inverse-square 
variation of density in the envelope have been studied. It is found that such structures are 
pulsationally stable. Keeping in view the relativistic restriction on the speed of a signal 
(vSs c) ,  it is found that K,,, = 0.80 for such structures. The maximum surface and central 
red shifts are found to be 0.502 and 28.7 respectively. An application of such structures to 
the case of a neutron star gives the maximum mass and size of the star to be 2.31Mo and 
12.2 km. 

1. Introduction 

Exact solutions for the isothermal equation of state ( P =  Kp) were first obtained by 
Misner and Zapolsky (1964) for infinite central densities. Brecher and Caporosso 
(1976) applied these solutions to isothermal neutron star cores. Recently Durgapel et a! 
(1979) have determined general solutions for the isothermal equation of state and 
applied them to estimate the mass and size of neutron stars with different isothermal 
cores. They have also shown that the solutions as given by Misner and Zapolsky (1964) 
pertain to a special case of their solutions, namely when the central density, pc ,  becomes 
infinite. 

Solutions €or spherical systems with isothermal cores corresponding to K = 1/3 and 
an envelope having (dP/dp) = 1 were determined by Bondi (1964). Das and Narlikar 
(1976) extended Bondi’s work to isothermal cores with different values of K s 0.5 and 
(dP/dp j c 1. Bondi (1964) and Das and Narlikar (1976) also considered envelopes with 
constant density, but such solutions are unrealistic and unlikely to occur in nature 
because constant density implies (dP/dp) = -CO and hence an infinite and imaginary 
value for speed of sound (U, = (dP/dp)”’). Further, no calculations have been done for 
the stability under radial pulsation for structures with envelopes of constant (dP/dp). 
Yabushita (1977) has shown that the solutions corresponding to maximum red shifts 
(Das and Narlikar 1976) are not stable under radial pulsations. Massive spherical 
systems have also been discussed by Durgapal and Gehlot (1969) and Gehlot and 
Durgapal(l97 l ) ,  who considered a core of constant density surrounded by an envelope 
of varying density ( p  oc r-’). In their solutions it is not certain whether such systems are 
stable under radial pulsations, and also whether a constant-density core pertains to 
infinite and imaginary velocity of sound in the core. 

In this paper we have constructed a more realistic model which can be applied to 
physical problems. The isothermal core is surrounded by an envelope having a density 
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p cc r-2. We have obtained exact solutions throughout the sphere by matching the two 
solutions 

P=  Kp, 

87rp = C/r2, b 6 r a (envelope) 

0 S r s b (core) 

at the boundary r = b. This study has been made for various values of K. 
In addition to finding exact solutions for the core and envelope system described 

above, we have also studied the variation of P, p, (dP/dp) with r. Moreover, the stability 
of these systems under radial pulsations, following the method given by Chandrasekhar 
(1964) and Harrison et a1 (1965) has also been studied. 

Based on this model, the size and mass of neutron stars has been calculated by 
considering the density at r = a equal to 2 X l oT4  g ~ m - ~ ,  and their radial pulsation 
frequencies have also been calculated following Harrison er a1 (1965). Lastly, the red 
shifts have been calculated at the surface (r = a) ,  the boundary (r = b )  and the centre 
(r = 0) .  Under physically realisable conditions the maximum central red shift, Z,, is 
found to be 29-8, which is by far the highest for a physically realistic system. 

The general assumptions made for solving Einstein’s field equations are the 
following: 

(a) The core ( O s  r c b ) ,  which corresponds to an equation of state P =  Kp, is 
surrounded by an envelope with a density distribution p a  l / r2 .  

(b) The system is spherically symmetric and static, and the space is empty outside a 
finite region of radius a. 

(c) At  r = a, the interior and exterior Schwarzschild solutions should match, that is, 
e v u  = 

(d) The solutions (or the values of Y, A, P and p )  in the core and the envelope have 
the same values at the internal boundary r = b. 

(e) The pressure and density are everywhere positive and finite. The density at all 
points decreases with increasing r. The ratio P/p at no point increases with increasing r. 

(f)  The velocity of sound never exceeds the velocity of light, i.e. (dP/dp)”2< 1. 
(g) The structures are stable under radial pulsations. 
Taking the velocity of light c equal to 1 and the gravitational constant G equal to 1, 

the relations between the energy density p ,  the pressure P, and the energy-momentum 
tensor of a perfect fluid are given by 

= 1 -(2m/a)’and P( r  = a )  = 0. 

(1) p =  -T1-  - T 2 -  - T 3  P = Tg, 1 -  2 -  3.  

2. Field equations and their solutions 

2.1. Field equations 

The line element is given by 

ds2 = e ”  dt2 - eA dr2 - r2 df12 - r2 sin2 8 d+’ 

Here, A and Y are functions of r alone. The resulting field equations are 

-87rT: = 87rP = eCA(v/r+ l / r2)-  l / r2 ,  

_1 87T: = -87rT: = 87rP = e-’[v‘‘/2 + d 2 / 4 - A ’ v ‘ / 4 +  (A‘- v’)/2r], 

87rTg= 87rp = l/r2+e-A(A’/r- l /r2),  

(3 1 
(4) 
( 5 )  
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where primes denote differentiation with respect to r. From equations (3) ,  (4)  and ( 5 )  
we obtain (Oppenheimer and Volkoff 1939) 

m(r) = / 0 '4~pr2  dr, 

2.2. The solutions for the core 

0 6 r < 6 :  The equation of state is given by 

P =  Kp. 

Using equations (6) and (9) ,  we obtain 

(7)  

(9)  

The Oppenheimer-Volkoff equation (8) €or P = Kp can be written as 

1 - ( 8 ~ / r )  / o rpr2dr=(8~pr2+1)  1-- 2K - p' -' [ K + l ( p ? l  ' 

Equation (1 1 )  can be computed to evaluate the density and eA within the core following 
the procedure as given by Durgapal et a1 (1979) for an isothermal massive sphere. We 
assume the central density p c  to be 

pc= 3K/2.rr(K -t 1)(3K + l ) r i ,  (12) 

where ro is an interval depending upon the choice of the central density. Equation ( 1  1) 
is now matched at successive points for the value of r in the range 0 c r < 6ro. The value 
of p / p J  = P/Pc) and 2m(r) / r  for different values of r = Nro are shown in table 1 for 
K = 0.2,$, 0.4, 0.6, 0.8 and 1.0 respectively. 

2.3. Solutions in the envelope 

b == r S a. The density is given by 

8 ~ p  = C/r2 

The solutions for C < $ are given by (Gehlot and Durgapal 1971) 

e-'= I - C =  1 - (2m/a ) ,  

eYI2 = [ ( I  + n)'(r/a)'-" - ( 1  - n)2(r/a) '+"]/4n(2-  n2l1", 

(13) 

where n 2 = ( 1 - 2 C ) / ( l - C ) .  
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Table 1. 

0.9840 
0.9835 
0.8680 
0.7810 
0.686 1 
0.5899 
0.5008 
0.4232 
0.2938 
0.2046 
0,1446 
0.1051 
0.06066 
0,03823 
0.0259 

0.008059 
0.02506 
0.05382 
0.08980 
0.1298 
0.1708 
0.2105 
0.2473 
0.3090 
0.3539 
0.3844 
0.4040 
0.4237 
0.4286 
0.4265 

0.9843 
0.9386 
0.8682 
0.7809 
0.6849 
0.5918 
0.5020 
0.4200 
0.2893 
0.2000 
0.1406 
0.1015 
0.05850 
0.03670 
0.02500 

0.0077 
0.0301 
0.0646 
0.1078 
0.1557 
0,2050 
0,2527 
0.2868 
0,3693 
0.421 1 
0.4557 
0.4774 
0.4982 
0.5024 
0.4990 

0.9843 
0.9317 
0.8678 
0.7802 
0.6804 
0.5823 
0.4913 
0.4016 
0.2785 
0.1942 
0.1380 
0,1003 
0.05967 
0.03854 
0.02546 

0.008000 
0.0313 
0.06710 
0.1119 
0.1751 
0.2234 
0.2701 
0.3123 
0.3814 
0.4317 
0.4661 
0.4894 
0.5147 
0.5034 
0.5064 

0.9843 
0.9180 
0.8668 
0.7791 
0.6838 
0.5888 
0.4995 
0.4188 
0.2906 
0.2026 
0.1438 
0.1046 
0.0609 
0.03882 
0.02662 

0.01629 
0.03622 
0*07181 
0.1173 
0.1681 
0.2204 
0.27 11 
0.3179 
0.3958 
0.4524 
0.4910 
0.5151 
0.5420 
0,5497 
0,5488 

1 
8 
l a 
B 
z 
H 
4 
7 
H 
1 
5 
4 
3 

7 

- 

2 

a 
2 
2 
3 
z 
4 
5 
6 

5 

7 

0.9843 
0.9388 
0.3687 
0,7821 
0.6878 
04937 
0.5051 
0.4255 
0.2977 
0.2092 
0.1498 
0,1095 
0.06433 
0.04124 
0.02840 

0.008088 
O"03147 
0.06757 
O. i  128 
0.1631 
0.2149 
0.2651 
0.3118 
0~3903 
0.4483 
0.4887 
0.5156 
0.5450 
(1.5555 
0.5568 

0.9844 0.0301 
0,9390 0.0646 
0.8693 0. IO79 
0.7834 0,1562 
0*6300 0.2060 
0,5970 0.2546 
0.5094 0.2999 
0.4308 0,3769 
0.3041 0.4347 
0.2156 0.4760 
0.1551 0.5044 
0.1 152 0.5373 
0.06820 0.5508 
0,04400 0.5546 
0,03040 0.5534 

0.9844 0.005896 
0.9396 0.02293 
0.8714 0.04930 
0.7881 0.08247 
0.6984 0.1 149 
0.6096 0.1585 
0.5262 0'1969 
0.451 1 0.2334 
0.3289 0.2977 
0.2413 0.3492 
0.1 198 0.3889 
0.1367 0.4188 
0.08444 0.4585 
0.05601 0.4806 
0.03940 0.4926 
0.02906 0.4987 
0.01772 0.5029 
0.01 182 0.5060 

2.4. Continuity at the boundary r = b 

At the boundary r = 6,  we have 

P = Kpt, 
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or 

~ = ( 1 - n ~ ) [ 1 - ( b / a ) ~ " 1 / [ ( 1 + n ) ~ - ( 1 - n ) ~ ( b / u ) ~ " ]  for ~ > : b  
= ( 1  + k 2 ) [ (  1 - k 2 )  + 2k cot(kx,)]-' for C a 1 

where x b  = ln(a/b). 
Continuity of e-* and p at r = b gives 

8rpbb2 = 2m(b) /b  = 2m/a  

or 

(19)  

Continuity of e" and p gives the value of the constant A in the expression (10) .  
Using equation (20)  and table 1 ,  we can find the value of m ( b ) / b  = C / 2  which in turn 
gives 

n = - k 2  = ( 1  - 2 C ) / (  1 - C). (21)  

Once the value of n or k is known we can find the value of (b la ) .  For C S i  

b / a  =: { [ 1 - K (  E)] /[ 1 - K( e)]) ' I Z n .  

[ ( l -  K ) + ( l +  2kK K ) k 2  1 * Xb=In(a/b)= ( l j k )  tan-' 

Calculated values of (p,/p,), (b la ) ,  (b /ro)  and C are given in table 2. 

Table 2. 

0.2 142.6 0.4283 3.00 0.4285 
J 192.6 0,3761 3.00 0.5024 
0.4 503.4 0.2793 3.50 0.5063 
0.6 395.6 0.2552 3.00 0.5498 
0.8 801.4 0.1739 3.00 0.5569 
1.0 2933 0.1059 3.50 0.5545 
2.0 a2 0 5.00 0.5030 

1 

(22a)  

3. Model of neutron stars 

3.1. Mass and radius 

Assuming the density pa at r = a to be 2 X g ~ m - ~ ,  the masses of the configurations 
are calculated. The values of ro, a, 6, mcore, menvelope, m and (dP/dp)'/2 at r = a and b 
are shown in table 3. The value of (dP/dp) exceeds unity for values of K > 0.8 .  The 
only physically realistic models are those which correspond to K < 0.8. 
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0.2 1.530 10.72 4.590 0.6674 0.8909 1.558 0.5196 0.4329 
1.506 11.61 4.518 0.7698 1.235 2.005 0.6699 0.5024 

0.4 0,9298 11.65 3.254 0.5589 1.442 2.001 0.7124 0.5063 
0.6 1.032 12.14 3.096 05773 1.686 2.263 0.8840 0.5525 
0.8 0.7085 12.22 2.125 0.4004 I .906 2.306 1-009 0.5605 
1.0 0.3689 12.19 1.291 0,2429 2.050 2.293 1,114 0.5578 
2.0 0 11.61 0 0 1.98 1 1.981 1.483 2.289 

3.2. Pulsational stability and frequency 

It has been shown by Chandrasekhar (1964) and Harrison et a1 (1965), using a 
variational principle, that an equilibrium configuration for a sphere of cold catalysed 
matter is stable against radial deformations if and only if the potential energy is positive 
definite. The potential energy R is given by the expression 

e A/2 e 3 v / 2  [ 4 r 3 ~ ’ + 9 y ~ r 3 - r 4 ( ~ ‘ 2 / ~ + p ) ]  

Since the solutions in the core and the envelope are known, R can be evaluated 
straightaway. The results are given in table 3 and one can easily see that for all values of 
K the potential energy is positive definite, implying that such structures are stable 
against radial deformations. 

Harrison et a1 (1965) have also shown that the radial acoustical modes of affective 
vibrations of a sphere of cold catalysed matter have a normal angular frequency which is 
given by 

where 
w 2  = R/A (24) 

A =  e3A/2 e”/2(P+p)r4 dr. loa 
Calculating A (for different K )  using equation (25), one can thus obtain the frequencies, 
f = w / 2 ~ .  The results are given in table 3. 

4. Central red shift 

An attempt has been made to evaluate the maximum red shift for the structures which 
are pulsationally stable and in which d.!!/dp =s 1. In 0 3.2, we have already seen that the 
structures discussed in this paper are stable under radial pulsations. The expression for 
(dP/dp) can easily be determined as: 

for c c 1, 
U,= (dP/dp)’l2= (1-n2)1/2[(1-n)(r/a)2“-(1+n)]/[(l+n)2-(1-n)2(r/a)2n] 
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and for C a ; ,  

1735 

0, = (1 + k2)'12[ 1 + k cot( kx)]/[ (1 - k 2 )  + 2k cot( k x ) ] .  

Values of dP/dp at r = a and r = b are shown in table 3. 

follows. 
The red shifts Z,, zb,  and 2, at r = a, b and c respectively can be determin 

1 + 2, = (1 - C)-'I2, 

1 + z b  = 4n(2- n2)'"[(1 + n)'(b/a)'-" - (1 - n)2(b/a)1+"]-' for c s 3, 
= ( a / b ) ~ ( 2 + k ~ ) " ~ [ 2 k  cos kXb+(1-k2)sin kXb1-l for C S $ .  

Using equation (15), we see that 

d S 

The values of Z,, z b  and 2, are also given in table 4. The maximum value of red shift 
which a physically realisable structure can have is found to be 28.72. 

Table 4. 

f 
K R x ~ O - ~  A X ~ O - ' ~  (inHz) 2, zb 2, 

3 0.02482 25.41 1492 0.418 1.549 4.824 
0.2 0.05614 11.14 3389 0.323 0.887 2.251 

0.4 0.02332 20.07 1628 0.423 2.193 8.112 
0.6 0.02842 26.61 1560 0.490 3.505 14.23 
0.8 0.02910 28.08 1537 0.502 6.204 28.72 
1 .o 0.02903 27.63 1548 0.498 12.46 70.44 
2.0 0.01810 14.65 1678 0.418 6.817 X 10" 1.003x lo'* 

1 - 

5. Results and discussion 

(i) As K is increased it is seen that core size, as compared to the size of the 

(ii) The surface red shift, Z,, also increases with K, but has a maximum value 0,502 

(iii) On the other hand, the central red shift 2, steadily increases with K, tending to 
as K is increased beyond 1.0. For K = 0.80, the central red shift turns out to be 

28.72 (table 4). 
(iv) These structures with an isothermal core and an inverse-square variation of 

density in the envelope, are seen to be stable under radial pulsations-0 turns out to be 
positive for all the cases. The radial pulsational frequencies are - lo3 Hz (table 4). 

(v) The values of (dP/dp) at r = b and r = a increase with K. For all cases except 
K = 2.0, (dP/dp)b L (dP/dp),, a condition which must be satisfied for a realistic case. 
Moreover, since (dP/dp)s  1 for the speed of sound not to exceed the speed of light, 
0.80 turns out to be the maximum value of K because at this K, (dP/dp)b just becomes 
unity (table 3). 

configuration, decreases-when K = 2.0, the core size is almost zero (table 2). 

when K = 0.80. Beyond this K value it again decreases (table 4). 
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(vi) Taking pa = 2 x IOi4 g c K 3 ,  the masses of the core and envelope have been 
calculated (table 3). The mass of the core decreases with K, while the mass of the 
envelope increases up to K =1 1.0, beyond which it decreases. The maximum total mass 
is again obtained for K = 0.80. Based on this model for a neutron star, the maximum 
mass is found to be 2.306Mo. The size of the structure, for a neutron star model, i s  - 10 km-the maximum value 12.22 km appearing for K = 0.80. The core radius, 
however, decreases with K. 

It is thus seen that for such structures K = 0.80 should be considered the maximum 
K value for a physically realistic case. (Incidently, Durgapai et a1 (1979) have also 
found that K = 0.80 gives the maximum mass for an isothermal sphere.) 

Values of K > 0.80 pertain to supraluminal cases and hence should not be used for 
physically real situations. The maximum values for surface and central red shifts (for 
K- = 0.80) turn out to be 0.502 and 28.72 respectively-the latter being the maximum 
value as far as is known to the authors. As applied to the case of a neutron star, the 
maximum mass is 2.306M0 and the maximum size is 12.22 km. 

The maximisation as done in this study has the additional features that (i) the central 
density is always finite and (ii) the supraluminal cases have been avoided altogether. 

Apart from all this, it is also seen that for supraluminal cases there is an erratic 
behaviour in the solutions. This is another reason why these cases should be avoided in 
constructing models pertaining to physical situations. 
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